久久国产精品吞精,在线免费一区二区,国产两个女同在情趣酒店,国产综合久久久久

      • 姓名: 馬林
      • 性別: 男
      • 職務(wù): 
      • 職稱(chēng): 研究員
      • 學(xué)歷: 博士研究生
      • 電話(huà): 
      • 傳真: 
      • 電子郵件: malin@gig.ac.cn
      • 通訊地址: 廣州市天河區科華街511號
        簡(jiǎn)  歷:
      •   馬林研究員、博士生導師,基金委優(yōu)秀青年科學(xué)基金獲得者(2021),現任同位素地球化學(xué)國家重點(diǎn)實(shí)驗室黨支部書(shū)記,所黨委委員,學(xué)位委員會(huì )委員。主要從事巖石地球化學(xué)研究,在青藏高原南部洋?-陸俯沖轉換的精細化深部動(dòng)力學(xué)重建和地殼生長(cháng)演化方面提出了新認識。主持或參與了國家自然科學(xué)基金青年、面上、優(yōu)青、重點(diǎn)和創(chuàng )新群體項目、國家重點(diǎn)研發(fā)專(zhuān)項、第二次青藏高原科考、中科院戰略先導專(zhuān)項等項目的研究。已發(fā)表國內外學(xué)術(shù)論文53篇,其中以第一/通訊作者身份在Geology、Geochimica et Cosmochimica Acta、Journal of Geophysics Research、Journal of Petrology、Chemical Geology和Lithos等刊物發(fā)表SCI論文20篇。Google Scholar論文被引用1600余次,H?-index19。曾獲得中國科學(xué)院院長(cháng)優(yōu)秀獎(2013),入選中國科學(xué)院青年創(chuàng )新促進(jìn)會(huì )(2017),現任國際綜合性期刊《The Innovation》與核心期刊《地球化學(xué)》青年編委,長(cháng)期為Nat. Comm.、Geology、GCA、JPet、Tectonics、GSAB、Lithos等學(xué)術(shù)刊物審稿,2016、2018年度Lithos突出貢獻審稿人(Outstanding Contribution in Reviewing),2017年度Journal of Asian Earth Science突出貢獻審稿人。指導的研究生獲中科院院長(cháng)優(yōu)秀獎與朱李月華優(yōu)秀博士生獎。

          

          2022.01-至今    中國科學(xué)院廣州地球化學(xué)研究所,研究員;

          2022.04-至今    中國科學(xué)院廣州地球化學(xué)研究所,學(xué)位委員會(huì )委員;

          2021.04-至今    中國科學(xué)院廣州地球化學(xué)研究所,黨委委員;

          2019.10-至今    同位素地球化學(xué)國家重點(diǎn)實(shí)驗室,黨支部書(shū)記;

          2019.9-2019.12   英國Cardiff University,高級訪(fǎng)問(wèn)學(xué)者;

          2016.11-2017.10  英國Cardiff University,訪(fǎng)問(wèn)學(xué)者;

          2016.01-2021.01  中國科學(xué)院廣州地球化學(xué)研究所,副研究員;

          2013.07-2015.12  中國科學(xué)院廣州地球化學(xué)研究所,助理研究員;

          2009.07-2013.06  中國科學(xué)院廣州地球化學(xué)研究所巖石地球化學(xué)專(zhuān)業(yè),博士;

          2006.09-2009.06  中國科學(xué)院廣州地球化學(xué)研究所構造地質(zhì)學(xué)專(zhuān)業(yè),碩士;

          2002.09-2006.07  蘭州大學(xué)資源環(huán)境學(xué)院地質(zhì)學(xué)系地質(zhì)學(xué)專(zhuān)業(yè),學(xué)士。 

         

        社會(huì )任職:
      •  
        研究方向:
      •   1) 板片匯聚邊緣巖漿巖巖石學(xué)與大陸動(dòng)力學(xué),主要關(guān)注洋-陸俯沖轉換階段巖漿巖成因,以及深部動(dòng)力學(xué)過(guò)程的淺表響應;

          2) 顯生宙大陸地殼生長(cháng)與演化,主要關(guān)注大陸地殼的形成、保存與成分分異演化及機制;

          3) 弧地殼巖漿過(guò)程、物質(zhì)循環(huán)與金屬成礦,重點(diǎn)關(guān)注俯沖帶物質(zhì)遷移、擴散、循環(huán)和高溫過(guò)程中的年代學(xué)與同位素分餾效應、機制與應用。 

         

        獲獎及榮譽(yù):
      •   2021年8月,國家基金委優(yōu)秀青年科學(xué)基金
          2021年7月,中國科學(xué)院廣州地球化學(xué)研究所優(yōu)秀黨務(wù)工作者
          2019年7月,中國科學(xué)院廣州地球化學(xué)研究所優(yōu)秀共產(chǎn)黨員
          2016年11月,中國科學(xué)院青年創(chuàng )新促進(jìn)會(huì ) 
          2016、2018年度,《Lithos》突出貢獻審稿人(Outstanding Contribution in Reviewing)
          2017年度,《Journal of Asian Earth Science》突出貢獻審稿人
          2013年7月,中國科學(xué)院院長(cháng)優(yōu)秀獎
          2013年7月,北京市教育局優(yōu)秀畢業(yè)生
          2013年3月,教育部研究生國家獎學(xué)金
          2012年7月,中國科學(xué)院研究生院三好學(xué)生標兵
          2009年7月,中國科學(xué)院研究生院優(yōu)秀畢業(yè)生
          2009年7月,中國科學(xué)院研究生院三好學(xué)生標兵
          2008年7月,中國科學(xué)院研究生院優(yōu)秀學(xué)生干部
          2008年7月,中國科學(xué)院研究生院三好學(xué)生 
          2007年7月,中國科學(xué)院研究生院三好學(xué)生
          2005年2月,蘭州大學(xué)大學(xué)生創(chuàng )新創(chuàng )業(yè)計劃優(yōu)秀作品獎
          2004年10月,蘭州大學(xué)社會(huì )實(shí)踐先進(jìn)個(gè)人
          2004年5月,蘭州大學(xué)優(yōu)秀學(xué)生會(huì )干部
          2004年5月,蘭州大學(xué)優(yōu)秀共青團員
        代表論著(zhù):
      • 2023

        [1]. Ma, L., Wang, Q., Kerr, A.C., Li, Z.X., Dan, W., Yang, Y.N., Zhou, J.S., Wang, J., Li, C., 2023. Eocene magmatism in the Himalaya: Response 1 to lithospheric flexure during early Indian collision? Geology, 51(1), 96–100, DOI:10.1130/G50438.1.

        2022

        [2]. Wang, J., Gleeson, M., Smith, W.D., Ma, L., Lei, Z.B., Shi, G.H., Chen, L., 2022. The Factors Controlling Along-arc and Across-arc Variations of Primitive Arc Magma Compositions: A Global Perspective, Frontiers in Earth Science. DOI: 10.3389/feart.2022.1055255

        [3]. Zhou, J.S., Huang, C.C., Wang, Q., Ren, Z.Y., Ma, L., Hao L.L., Zhang L., 2022. Olivines and Their Melt Inclusions in Potassic Volcanic Rocks Record Mantle Heterogeneity beneath the Southern Tibet, Journal of Petrology, 63(11), https://doi.org/10.1093/petrology/egac103.

        [4]. Fan, J. J., Wang, Q., Ma, L., Li, J., Zhang, X.Z., Zhang, L., Wang, Z.L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334, 241-258. https://doi.org/10.1016/j.gca.2022.08.009.

        [5]. Zhang, M.-Y., Hao, L.-L., Wang, Q., Qi, Y., Ma, L., 2022. B–Sr–Nd isotopes of Miocene trachyandesites in Lhasa block of southern Tibet: Insights into petrogenesis and crustal reworking. Frontiers in Earth Science, 10:953364, doi: 10.3389/feart.2022.953364.

        [6]. Hao, L. L., Wang, Q., Ma, L., Qi, Y., & Yang, Y. N., 2022. Differentiation of continent crust by cumulate remelting during continental slab tearing: Evidence from Miocene high-silica potassic rocks in southern Tibet. Lithos, 426-427, 106780.

        [7]. Liu, X., Liang, H., Wang, Q.*, Ma, L.*, Yang, J.H., Guo, H.F., Xiong, X.L., Ou, Q., Zeng, J.P., Gou, G.N., Hao, L.L., 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan–Qingxixiang–Yanbei area, South China: Petrogenesis and implications for ore mineralization. Journal of Asian Earth Sciences,105274.

        [8]. Tang, G.J., Wyman, D.A., Wang, Q. Ma, L., Dan, W., Yang, Y.N., Liu, X.J., Chen, H.Y., 2022. Links between continental subduction and generation of Cenozoic potassic–ultrapotassic rocks revealed by olivine oxygen isotopes: A case study from NW Tibet. Contributions to Mineralogy and Petrology, 177, 53. https://doi.org/10.1007/s00410-022-01920-x

        [9]. Hao, L.L., Wang, Q., Kerr, A.C., Wei, G.J., Huang, F., Zhang, M.Y., Qi, Y., Ma, L., Chen, X.F., Yang, Y.N., 2022. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: Evidence from southern Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 584, 117508. https://doi.org/10.1016/j.epsl.2022.117508.

        [10]. Huang T.Y., Wang, Q., Wyman, D.A., Ma, L., Zhang, Z.P., Dong, H., 2022. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophysical Research Letters. 49, e2021GL097360. https://doi.org/10.1029/2021GL097360.

        [11]. 馬林*,王強,唐功建,李成. 2022. 岡底斯陸殼屬性與顯生宙生長(cháng)演化. 大地構造與成礦學(xué). 46(6), 1170-1184. doi: 10.16539/j.ddgzyckx.2022.04.000

        [12]. 耿啟凡,馬林*. 拉薩南部始新世曲水輝長(cháng)巖成因及其對同碰撞巖漿活動(dòng)的指示意義. 大地構造與成礦學(xué). (待刊)

        2021

        [13]. Ma, L., Gou, G.N., Kerr, A.C., Wang, Q.*, Wei, G.J., Yang, J.H., Shen, X.M., 2021. B isotopes reveal Eocene m lange melting in northern Tibet during continental subduction. Lithos, 106146, https://doi.org/10.1016/j.lithos.2021.106146.

        [14]. Ma, L.*, Wang, Q., Kerr, A.C., Tang, G.J., (2021). Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 106076. https://doi.org/10.1016/j.lithos.2021.106076

        [15]. Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., and Zhang, L., 2021, Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet. Geochimica et Cosmochimica Acta, 297, 120-142. https://doi.org/10.1016/j.gca.2021.01.005.

        [16]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Ma, Y.M., and Huang, T.Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 219: 104890.

        [17]. Liu, X., Wang, Q.*, Ma, L.*, Gou, G.N., Ou, Q. and Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 1-19. https://doi.org/10.1007/s00710-020-00733-9

        [18]. Zhou, J.S., Wang, Q., Xing, C.M., Ma, L., Hao, L.L., Li, Q.W., Wang, Z.L., Huang, T.Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters. 568: 117005. https://doi.org/10.1016/j.epsl.2021.117005.

        [19]. Yang, Z.Y., Wang, Q., Hao, L.L., Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P. and Hu, W.L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology. 49(6): 708–712, https://doi.org/10.1130/G48486.1

        [20]. Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2021. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, 402–403, 105788.  https://doi.org/10.1016/j.lithos.2020.105788.

        [21]. Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2021. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 133 (7-8), 1634–1648, https://doi.org/10.1130/B35659.1.

        [22]. Xia X.-P., Meng J.-T., Ma L., Spencer C.J., Cui Z.X., Zhang W.F., Yang Q., Zhang L., 2021. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 106445. https://doi.org/10.1016/j.lithos.2021.106445.

        [23]. 蒙均桐,夏小平,馬林,姜子琦,徐健,崔澤賢,楊晴,張萬(wàn)峰,張樂(lè ). 西藏岡底斯地區殼源巖漿水含量差異:來(lái)自鋯石水含量的啟示. 中國科學(xué):地球科學(xué), 51, doi: 10.1360/SSTe-2020-0366

        [24]. 劉瀟,王強,馬林*,王軍. 2021. 廣州市白云山片麻狀花崗巖成因及構造意義. 地球化學(xué)50(4), 340–353.

        2020

        [25]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Gou, G.N., Ou, Q. and Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376, p.105763.

        [26]. Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.H., Yang, J.H., Zi, F., Tang, G.J., Dan, W., Zhou, J.S.. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high 18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236. https://doi.org/10.1016/j.jseaes.2020.104236.

        [27]. Liu X., Wang Q.*, Ma L.*, Yang Z.Y., Hu W.L., Ma, Y.M., Wang J., Huang T.Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos. 364-365, 105537.

        [28]. Hao, L.L., Wang, Q., Kerr, A.C., Yang, J.H., Ma, L., Qi, Y., Wang, J. and Ou, Q., 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin. doi: https://doi.org/10.1130/B35659.1

        [29]. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang, Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late Jurassic diorites, Central Tibet: Implications for petrogenesis and geodynamic processes. Lithos, 105644. https://doi.org/10.1016/j.lithos.2020.105644.

        [30]. Fan, J.J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.L., Ma, L., Wang, Z.L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology. 545, 119648. https://doi.org/10.1016/j.chemgeo.2020.119648.

        [31]. Tang, G.J.*, Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.X., Zhao, Z.H.. 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, https://doi.org/10.1093/petrology/egaa018

        [32]. 王強,唐功建,郝露露,Derek Wyman馬林,但衛,張修政,劉金恒,黃彤宇,許傳兵. 2020. 洋脊俯沖巖漿作用與成礦. 中國科學(xué):地球科學(xué), 63, 1499–1518. https://doi.org/10.1007/s11430-019-9619-9

        [33]. 徐義剛,王強,唐功建,王軍,李洪顏,周金勝,李奇維,齊玥,劉平平,馬林,范晶晶. 2020. 弧玄武巖起源:新進(jìn)展與存在問(wèn)題. 中國科學(xué):地球科學(xué)63, 1969–1991. https://doi.org/10.1007/s11430-020-9675-y

        [34]. 王強,郝露露,張修政,周金勝,王軍,李奇維,馬林,張龍,齊玥,唐功建,但衛,范晶晶. 2020. 匯聚板塊邊緣的埃達克巖:成分與成因.中國科學(xué):地球科學(xué)63, 1992–2016. https://doi.org/10.1007/s11430-020-9678-y

        2019

        [35]. Ma, L., Kerr, A. C., Wang, Q., Jiang, Z.‐Q., Tang, G.‐J., Yang, J.‐H., et al. (2019). Nature and evolution of crust in southern Lhasa, Tibet: Transformation from microcontinent to juvenile terrane. Journal of Geophysical Research: Solid Earth, 124, 6452–6474. https://doi.org/10.1029/2018JB017106. 

        [36]. Hao, LL; Wang, Q; Wyman, DA; Yang, JH; Huang, F., Ma, L., Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 2019, 342: 407-419.

        [37]. Ou, Q., Wang, Q., Wyman, D.A., Zhang, C.F., Hao, L.L., Dan, W., Jiang, Z.Q., Wu, F.Y, Yang, J.H., Zhang, H.X., Xia, X.P., Ma, L., Long, X.P., Li, J., Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of America Bulletin, 2019, 131(7-8): 1385-1408.

        [38]. Hao, L. L., Wang, Q., Wyman, D. A., Ma, L., Wang, J., Xia, X. P., Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology. 47(2), 187–190.

        [39]. Yang, Z.Y., Wang, Q., Yang, J.H., Dan, W., Zhang, X.Z., Ma, L., Qi, Y., Wang, J., Sun, P., 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos. 350–351, 105199. https://doi.org/10.1016/j.lithos.2019.105199

        [40]. Ma, Y.M. Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697.

        [41]. Yang, Z.Y., Wang, Q., Zhang, C.F., Yang, J.H., Ma, L., Wang, J., Sun, P., Qi, Y., 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324–325402-417.

        2018

        [42]. Ma, L., Kerr, A.C., Wang, Q., Jiang, Z.Q., Hu, W.L., 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226. doi: 10.1016/j.lithos.2017.11.023.

        [43]. Hao, L. L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q.. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letters, 45(16), 8205-8213. https://doi.org/10.1029/2018GL079061.

        [44]. Shen, X., Zhang, H.X., Wang, Q., Saha, A., Ma, L., 2018. Zircon U–Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5), 1886-1905. doi: 10.1002/gj.3020. 

        2017

        [45]. Ma, L., Wang, Q., Kerr, A.C., Yang, J.H., Xia, X.P., Ou, Q., Yang, Z.Y., Sun, P., 2017. Paleocene (ca. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back? Journal of Petrology, 58(11): 2089-2114.

        [46]. Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Jiang, Z.Q., Liu, Y.S., Gou, G.N., Guo, H.F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92, doi:10.1016/j.gr.2016.02.005.

        [47]. 王強,但衛,紀偉強,張修政,梁華英,朱弟成,夏小平,馬林. 2017.中國西部燕山運動(dòng)及巖漿作用與成礦. 礦物巖石地球化學(xué)通報36(4): 570-573.

        [48]. 王強,茍國寧,張修政,但衛,唐功建,馬林. 2017. 青藏高原中北部地殼流動(dòng)與高原擴展: 來(lái)自火山巖的證據.中國科學(xué)基金. 2017:2, 492-498.

        2016

        [49]. Wang, Q., Hawkesworth, C. J., Wyman, D. A., Chung, S. L., Wu, F. Y., Li, X. H., Li, Z. X., Gou G. N., Zhang, X. Z., Tang, G. J., Dan, W., Ma, L., Dong, Y. H., 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature communications, 7:11888, doi: 10.1038/ncomms11888.

        2015

        [50]. Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases, Journal of Geophysics Research: Solid Earth, 120, 6159–6181, doi:10.1002/2015JB011966.

        [51]. Jiang, Z. Q., Wang, Q., Wyman, D. A., Shi, X., Yang, J. H., Ma, L., Gou, G. N., 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu Au Mo mineralization. International Geology Review, 57:3, 373-392.

        2014

        [52]. Ma, L., Wang, B.D., Jiang, Z.Q., Wang, Q.*, Li, Z.X., Wyman, D.A., Zhao, S.R., Yang, J.H., Gou, G.N., Guo, H.F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338.

        [53]. Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251.

        [54]. Jiang, Z., Wang, Q., Wyman, D., Li, Z., Yang, J., Shi, X., Tang, G., Jia, X., Ma, L., Gou, G., Guo, H.. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231.

        2013

        [55]. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology. 349–350, 54–70.

        [56]. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100-80 Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos. 172–173, 17–30.

        [57]. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F.. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos. 175–176, 315–332.

        [58]. 沈曉明, 張海祥, 馬林, 阿爾泰南緣晚石炭世淡色花崗巖的發(fā)現及其構造意義, 大地構造與成礦學(xué), 2013, 37(4): 721-729.

        [59]. 沈曉明, 張海祥, 馬林, 阿爾泰南緣杰爾庫都克酸性巖脈LA-ICP-MS鋯石U-Pb測年, 新疆地質(zhì), 2013, 31(3): 157-161.

        [60]. 沈曉明, 張海祥, 馬林, 新疆阿爾泰地區庫爾提蛇綠巖的鋯石U-Pb和角閃石40Ar/39Ar年代學(xué)及其地質(zhì)意義, 桂林理工大學(xué)學(xué)報, 2013, 33(3): 394-405.

        2012及以前

        [61]. Qiang Wang, Xian-Hua Li, Xiao-Hui Jia, Derek Wyman, Gong-Jian Tang, Zheng-Xiang Li, Lin Ma, Yue-Heng Yang, Zi-Qi Jiang, Guo-Ning Gou. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle and magma hybridization. Chemical Geology, 328, 222-243.

        [62]. 沈曉明, 張海祥, 馬林. 2010. 洋脊俯沖及其在新疆阿爾泰地區存在的可能證據. 大地構造與成礦學(xué), 34(2): 181-195.

        [63]. 馬林,張海祥,張伯友,牛賀才. 2008. 新疆北部庫爾提蛇綠巖中角閃片巖的原巖恢復及其成因.巖石學(xué)報244):673-680.

        [64]. 張海祥,牛賀才,沈曉明,馬林,于學(xué)元. 2008. 阿爾泰造山帶南緣和準噶爾板塊北緣晚古生代構造演化及多金屬成礦作用. 礦床地質(zhì)27(5): 596-604.

        [65]. 張海祥,沈曉明,馬林,牛賀才,于學(xué)元. 2008. 新疆北部富蘊縣埃達克巖的同位素年代學(xué)及其對古亞洲洋板塊俯沖時(shí)限的制約. 巖石學(xué)報24(5):1054-1058.

        [66]. 馬林, 張海祥, 沈曉明.2008. 庫爾提角閃片巖中角閃石的地球化學(xué)特征及成因討論. 礦物巖石地球化學(xué)通報, 27(增刊):262-264.

        [67]. Haixiang Zhang, Xiaoming Shen, Lin Ma. 2008. Geochronology of the Altay adakite and the initiation of the Paleo-Asian Ocean subduction. Geochimica et Cosmochimica Acta. 72 (12S), A1081.

         

        承擔科研項目情況:
      •   1.國家自然科學(xué)基金委優(yōu)秀青年科學(xué)基金《科希斯坦弧地球成熟演化機制及動(dòng)力學(xué)》,2022-2024,主持

          2.國家自然科學(xué)基金委面上基金《羌塘西部紅山湖鈉質(zhì)基性巖巖石成因及其對青藏高原地幔演化的啟示》,2019-2022,主持

          3.國家第二次青藏高原綜合科學(xué)考察研究專(zhuān)題《典型地區巖石圈組成、演化與深部過(guò)程》,2019-2022,參加

          4.國家自然科學(xué)基金委創(chuàng )新研究群體科學(xué)基金《陸內巖石圈演化與淺表響應》,2021-2024,參加

          5.中國科學(xué)院絲路環(huán)境先導專(zhuān)項子子課題《泛第三極主要與大規模成礦有關(guān)重要巖漿作用與動(dòng)力學(xué)機制》,2018-2022,參加

          6.國家重點(diǎn)研發(fā)計劃深地資源勘查開(kāi)采專(zhuān)項“青藏高原碰撞帶殼幔過(guò)程與成巖成礦實(shí)驗”第9課題第三專(zhuān)題《正向碰撞帶深部巖石圈組成和熱演化過(guò)程對成礦作用的制約》,2016-2020,主持

          7.國家自然科學(xué)基金委青年科學(xué)基金項目《拉薩地塊南部正嘎早古新世淡色花崗巖的成因及其對印度-亞洲大陸碰撞的啟示》,2015-2017,主持

           

        研究生培養情況:

          黃橙橙(女) 碩士(合作培養2015-2017)

          劉瀟               博士(合作培養2016-2021)

          范晶晶(女) 博士(合作培養2017-2021)

          耿啟凡           碩士(2018-2022)

          李成              碩士研究生在讀(2020- )

          喬偉              碩士研究生在讀(2021- )

          蒲瑞    (女)碩士研究生在讀(2022- )